
2.2   From Atomic Orbitals to Molecular Orbitals



The Hamilton Operator
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• Hamiltonian operator  describes the total energy of the quantum system, which can be separated 

into kine+c energy operator  and a poten+al energy operator  

  

• for example, for the allowed states of a quantum system of an mul+ple atomic nuclei  and mul+ple 
electrons , one has to consider all kine+c energy and poten+al energy contribu+ons  

 

  

with the Laplace operator:                       in 3D Cartesian coordinates 

                                                               in polar coordinates
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The Schrödinger Equa9on
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• state vector of any quantum system has to fulfill the +me-dependent Schödinger equa+on: 

  

• wavefunc+ons can form standing waves, called sta+onary states that can described by the +me-
independent Schrödinger equa+on: 

  

  

• the +me-independent Schrödinger equa+on is an Eigenequa+on that describes the allowed 

wavefunc+ons  (sta+onary states) of a par+cle of mass  , and the Eigenvalues are the associated 

energies 
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Approxima9ons to Solve the Schrödinger Equa9on
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• except for the simplest cases, the +me-independent Schrödinger equa+on cannot be solved 
analy+cally without approxima+ons  

• Born Oppenheimer approxima+on: the nuclei do not move! 

   and    

• independent electron (orbital) approxima+on: electrons do not see each other! 

   and    

• Born-Oppenheimer approxima9on reasonable due to dras9cally different masses 

• the independent electron approxima9on results in significant error (that later need to by corrected 
for more accurate results)
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Quantum Numbers and Exclusion Principle
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Name principal QN n azimuthal QN ℓ magne9c QN mℓ spin QN ms electrons

1s 1 0 0 +½, –½ 2

2s 2 0 0 +½, –½ 2

2p 2 1 +1, 0, –1 +½, –½ 6

3s 3 0 0 +½, –½ 2

3p 3 1 +1, 0, –1 +½, –½ 6

3d 3 2 +2, +1, 0, –1, –2 +½, –½ 10

• atomic orbital described by set of quantum numbers n (1 …), ℓ (0 … n–1), and m (–ℓ … +ℓ) 
• n, ℓ, m describe energy, angular momentum (“shape”), momentum vector component (“orienta9on”) 
• Pauli exclusion principle: each electron in a quantum system must have a unique set of quantum 

numbers; hence, orbitals filled with up to two electrons with different spin QN ms

• allowed states can be decomposed into a product of a spa+al func+on and a spin 

func+on  that are described by unique combina+ons of quantum numbers and 

• atomic orbitals are described by the spin-independent term  of the wavefunc+ons

|Ψi⟩ = Ψnlm
ξ

Ψnlm



Atomic Orbitals
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• representa9ons use color coding to show phase (sign) of the probability amplitude  itself 

• node planes are hypersurfaces of zero-probability to observe the electrons   

Ψ
| |Ψnlm⟩ |2 = 0

• atomic orbitals describe “space to find an electron” according to the spa+al wave func+on  

• graphically represented using the probability density                 

• more specifically, using contour surfaces , i. e., probability isosurfaces of   const.

Ψnlm

| |Ψnlm⟩ |2

| |Ψnlm⟩ |2 =

2s 2pz 2px 2py

3s 3pz 3px 3py 3dz2 3dxz 3dyz 3dxy 3dx2–y2



Sta9onary States in Monoatomic Systems
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• each energy level is degenerate in spin, that is, it is associated with both  and Ψnlm↑ Ψnlm↓

• the energies  of the sta+onary states  in hydrogenoid (monolectronic) atoms only depend on 

the main shell (principal QN ), subshells are degenerate 

• for polyelectronic atoms the energies  depend on principal QN  and azimuthal QN  because the 
degeneracy is liSed due to different shielding of the nucleic charge 

En |Ψn⟩
n

En n l

hydrogenoid atoms polyelectronic atoms
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Electronic Configura9on and Valence Electrons

60

• Pauli exclusion principle requires all electrons to have a unique set of quantum numbers 
• Klechkovski rule (AuÇau principle) demands to fill the orbitals from lower energies up 
• Hund’s maximum mul9plicity rule postulates “spin pairing energy” of electrons in the same AO 
• only valence shell (outer-most, highest-energy shell containing electrons, highest QN n) and 

valence electrons relevant for chemical bonding and reac9ons

• electronic configura+on is the repar++on of the electrons over the available atomic orbitals:
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see reader “Valence Bond Theory and HybridizaOon” for details 

Valence Shell Electron Pair Repulsion (VSEPR) Model
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• VSEPR model qualita9vely describes coordina9on geometry 
• tetrahedral for 4; trigonal-planar for 3, linear for 2 neighboring atoms (or electron pairs)

• atoms in real molecules have coordina+on geometries depending on the number of neighbors
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see reader “Valence Bond Theory and HybridizaOon” for details 

Valence Bond Theory and Hybridiza9on

62

• hybrid orbitals (mixed states) by linear combina+on of atomic orbitals (pure states) 

• hybridiza+on reconciles molecular geometries with available valence shell orbitals 

• Hermi+city: from a set of n solu+ons (an orthonormal basis), one can find a new set of n 
orthonormal solu+ons by linear combina+on
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Forma9on of Carbon-Carbon Single and Mul9ple Bonds
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• valence bond model: bonds are formed by electron pairing 
• double or triple bonds are one σ-bond plus one or two π-bonds, respec9vely 
• π-bonds formed between p orbitals, node plane along bond, no rota9onal but lateral symmetry
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Molecular Orbital Theory Descrip9on of the Covalent Bond
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• Molecular Orbital (MO) theory does not assign electrons to par9cular bonds between pairs of 
atoms but assumes they are delocalized throughout molecules 

• Schrödinger equa9on for polyatomic, polyelectronic quantum system can only be solved with 
further approxima9ons 

• Born-Oppenheimer approxima+on: polyelectronic wavefunc+ons 

• independent electrons approxima+on: product of monoelectronic wavefunc+ons 

• LCAO approxima+on: due to Hermi+city, monoelectronic molecular orbitals  can be derived 

from linear combina+ons of atomic orbitals (LCAO)  
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Towards an Exact Solu9on
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• with decreasing distance between atoms, atomic orbitals interact and split energe9cally 
• number of orbitals conserved, LCAO with one “in phase” and one “out of phase”
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amplitude ( )ψ electron denisity ( )|ψ |2

P. W. Atkins, Physical Chemistry, 11th ed., 2018, p. 352–355

Bonding and An9bonding Orbitals

66

• bonding orbitals

352 9 Molecular structure

Example 9B.1 Normalizing a molecular orbital

Normalize (to 1) the molecular orbital ψ+ in eqn 9B.2.

Collect your thoughts You need to find the factor N+ such that 
ψ ψ τ∫ =* d 1, where the integration is over the whole of space. 

To proceed, you should substitute the LCAO into this integral 
and make use of the fact that the atomic orbitals are individu-
ally normalized.

The solution Substitution of the wavefunction gives

!"# $# !"$ ! "# $#

∫ ∫ ∫ ∫ψ ψ τ ψ τ ψ τ ψ ψ τ= + +
⎧
⎨
⎩

⎫
⎬
⎭= ++ +N S N* d d d 2 d 2(1 )2

A
2

B
2

A B
2

where ψ ψ τ= ∫S dA B  and has a value that depends on the nucle-
ar separation (this ‘overlap integral’ will play a significant role 
later). For the integral to be equal to 1,

N S
1

{2(1 )}1/2= ++

For H2
+  at its equilibrium bond length S ≈ 0.59, so N+ = 0.56.

Self-test 9B.1 Normalize the orbital ψ− in eqn 9B.2 and evalu-
ate N− for S = 0.59.

Answer: N− = 1/{2(1 − S)}
1/2

, so N− = 1.10

1 1 S

Figure 9B.1 shows the contours of constant amplitude for 
the molecular orbital ψ+ in eqn 9B.2. Plots like these are read-
ily obtained using commercially available software. The calcu-
lation is quite straightforward, because all that it is necessary 
to do is to feed in the mathematical forms of the two atomic 
orbitals and then let the software do the rest.

(a) (b)

Figure 9B.1 (a) The amplitude of the bonding molecular orbital 
in a hydrogen molecule-ion in a plane containing the two nuclei 
and (b) a contour representation of the amplitude.

Brief illustration 9B.1

The surfaces of constant amplitude shown in Fig. 9B.2 have 
been calculated using the two H1s orbitals
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π

− −
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0
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and noting that rA1 and rB1 are not independent (1). When 
expressed in Cartesian coordinates based on atom A (2), 
these radii are given by rA1 = {x2 + y2 + z2}1/2 and rB1 = {x2 + y2 + 
(z − R)2}1/2, where R is the bond length. A repeat of the analysis 
for ψ− gives the results shown in Fig. 9B.3.
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Figure 9B.3 Surfaces of constant amplitude of the wavefunction 
ψ− of the hydrogen molecule-ion.

Figure 9B.2 Surfaces of constant amplitude of the wavefunction 
ψ+ of the hydrogen molecule-ion.
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(b) Bonding orbitals
According to the Born interpretation, the probability den-
sity of the electron at each point in H2

+ is proportional to the 
square modulus of its wavefunction at that point. The prob-
ability density corresponding to the (real) wavefunction ψ+ in 
eqn 9B.2 is

ψ +
2 ∝ ψA

2 + ψB
2 + 2ψAψB 

Bonding probability 
density  (9B.3)

This probability density is plotted in Fig. 9B.4. An important 
feature becomes apparent in the internuclear region, where 
both atomic orbitals have similar amplitudes. According to 
eqn 9B.3, the total probability density is proportional to the 
sum of:

t� ψA
2, the probability density if the electron were con-

fined to atom A;
t� ψB

2, the probability density if the electron were con-
fined to atom B;

t� 2ψAψ B, an extra contribution to the density from 
both atomic orbitals.

The last contribution, the overlap density, is crucial, because 
it represents an enhancement of the probability of finding 
the electron in the internuclear region. The enhancement can 
be traced to the constructive interference of the two atomic 
orbitals: each has a positive amplitude in the internuclear 
region, so the total amplitude is greater there than if the elec-
tron were confined to a single atom. This observation is sum-
marized as

Bonds form as a result of the build-up of electron 
density where atomic orbitals overlap and interfere 
constructively.

The conventional explanation of this observation is based 
on the notion that accumulation of electron density be-
tween the nuclei puts the electron in a position where it in-
teracts strongly with both nuclei. Hence, the energy of the 
molecule is lower than that of the separate atoms, where 
each electron can interact strongly with only one nucleus. 
This conventional explanation, however, has been called 
into question, because shifting an electron away from a 
nucleus into the internuclear region raises its potential en-
ergy. The modern (and still controversial) explanation does 
not emerge from the simple LCAO treatment given here. It 
seems that, at the same time as the electron shifts into the 
internuclear region, the atomic orbitals shrink. This orbital 
shrinkage improves the electron–nucleus attraction more 
than it is decreased by the migration to the internuclear 
region, so there is a net lowering of potential energy. The 
kinetic energy of the electron is also modified because the 
curvature of the wavefunction is changed, but the change 
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n in kinetic energy is dominated by the change in potential 
energy. Throughout the following discussion the strength of 
chemical bonds is ascribed to the accumulation of electron 
density in the internuclear region. In molecules more com-
plicated than H2

+ the true source of energy lowering may be 
this accumulation of electron density or some indirect but 
related effect.

The σ orbital just described is an example of a bonding or-
bital, an orbital which, if occupied, helps to bind two atoms 
together. An electron that occupies a σ orbital is called a σ 
electron, and if that is the only electron present in the mol-
ecule (as in the ground state of H2

+), then the configuration of 
the molecule is σ1.

The energy Eσ of the σ orbital is:1

E E j
R

j k
S1H1s

0= + − +
+σ  Energy of 

bonding orbital  (9B.4)

where EH1s is the energy of a H1s orbital, j0/R is the potential 
energy of repulsion between the two nuclei (remember that j0 
is shorthand for e2/4πε0), and
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Figure 9B.4 The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 9B.2. Note the 
accumulation of electron density in the internuclear region.

1 For a derivation of eqn 9B.4, see A deeper look 4 on the website for this 
text.
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 internuclear axis and passing through the mid-point of the 
bond where ψA and ψB cancel exactly (Figs. 9B.8 and 9B.9). 

The probability density is

ψ −
2 ∝ ψA

2 + ψB
2 − 2ψAψB 

Antibonding 
probability density  (9B.6)

There is a reduction in probability density between the nuclei 
due to the term −2ψAψB (Fig. 9B.10); in physical terms, there is 

destructive interference where the two atomic orbitals overlap. 
The σ* orbital is an example of an antibonding orbital, an or-
bital that, if occupied, contributes to a reduction in the cohe-
sion between two atoms and helps to raise the energy of the 
molecule relative to the separated atoms.

The energy Eσ* of the σ* antibonding orbital is2

= + − −
−σE E j

R
j k

S1* H1s
0  (9B.7)

where the integrals S, j, and k are the same as in eqn 9B.5. The 
variation of Eσ* with R is shown in Fig. 9B.6, which shows the 
destabilizing effect of an antibonding electron. The effect is 
partly due to the fact that an antibonding electron is excluded 
from the internuclear region and hence is distributed largely 
outside the bonding region. In effect, whereas a bonding elec-
tron pulls two nuclei together, an antibonding electron pulls 
the nuclei apart (Fig. 9B.11). The illustration also shows another 
feature drawn on later: |Eσ* − EH1s| > |Eσ − EH1s|, which indicates 
that the antibonding orbital is more antibonding than the bond-
ing orbital is bonding. This important conclusion stems in part 
from the presence of the nucleus–nucleus repulsion (j0/R): this 
contribution raises the energy of both molecular orbitals.

Region of
destructive
interference

Figure 9B.8 A representation of the destructive interference that 
occurs when two H1s orbitals overlap and form an antibonding σ 
orbital.

(a) (b)

Figure 9B.9 (a) The amplitude of the antibonding molecular 
orbital in a hydrogen molecule-ion in a plane containing the two 
nuclei and (b) a contour representation of the amplitude. Note 
the internuclear nodal plane.

Figure 9B.10 The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 9B.9. Note the 
reduction of electron density in the internuclear region.

(a)

(b)

Figure 9B.11 A partial explanation of the origin of bonding 
and antibonding effects. (a) In a bonding orbital, the nuclei 
are attracted to the accumulation of electron density in the 
internuclear region. (b) In an antibonding orbital, the nuclei are 
attracted to an accumulation of electron density outside the 
internuclear region.

2 This result is obtained by applying the strategy in A deeper look 4 on the 
text’s website.

Brief illustration 9B.3

At the minimum of the bonding orbital energy R = 2.49a0, 
and, from Brief illustration 9B.2, S = 0.46, j = 10.7 eV, and k = 
7.9 eV. It follows that at that separation, the energy of the anti-
bonding orbital relative to that of a hydrogen atom 1s orbital is

− − −
− =σE E( )/eV = 27.2

2.49
10.7 7.9
1 0.46 5.7* H1s

That is, the antibonding orbital lies (5.7 + 1.76) eV = 7.5  eV 
above the bonding orbital at this internuclear separation.
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At the minimum of the bonding orbital energy R = 2.49a0, 
and, from Brief illustration 9B.2, S = 0.46, j = 10.7 eV, and k = 
7.9 eV. It follows that at that separation, the energy of the anti-
bonding orbital relative to that of a hydrogen atom 1s orbital is

− − −
− =σE E( )/eV = 27.2

2.49
10.7 7.9
1 0.46 5.7* H1s

That is, the antibonding orbital lies (5.7 + 1.76) eV = 7.5  eV 
above the bonding orbital at this internuclear separation.

352 9 Molecular structure

Example 9B.1 Normalizing a molecular orbital

Normalize (to 1) the molecular orbital ψ+ in eqn 9B.2.

Collect your thoughts You need to find the factor N+ such that 
ψ ψ τ∫ =* d 1, where the integration is over the whole of space. 

To proceed, you should substitute the LCAO into this integral 
and make use of the fact that the atomic orbitals are individu-
ally normalized.

The solution Substitution of the wavefunction gives

!"# $# !"$ ! "# $#

∫ ∫ ∫ ∫ψ ψ τ ψ τ ψ τ ψ ψ τ= + +
⎧
⎨
⎩

⎫
⎬
⎭= ++ +N S N* d d d 2 d 2(1 )2

A
2

B
2

A B
2

where ψ ψ τ= ∫S dA B  and has a value that depends on the nucle-
ar separation (this ‘overlap integral’ will play a significant role 
later). For the integral to be equal to 1,

N S
1

{2(1 )}1/2= ++

For H2
+  at its equilibrium bond length S ≈ 0.59, so N+ = 0.56.

Self-test 9B.1 Normalize the orbital ψ− in eqn 9B.2 and evalu-
ate N− for S = 0.59.

Answer: N− = 1/{2(1 − S)}
1/2

, so N− = 1.10

1 1 S

Figure 9B.1 shows the contours of constant amplitude for 
the molecular orbital ψ+ in eqn 9B.2. Plots like these are read-
ily obtained using commercially available software. The calcu-
lation is quite straightforward, because all that it is necessary 
to do is to feed in the mathematical forms of the two atomic 
orbitals and then let the software do the rest.

(a) (b)

Figure 9B.1 (a) The amplitude of the bonding molecular orbital 
in a hydrogen molecule-ion in a plane containing the two nuclei 
and (b) a contour representation of the amplitude.

Brief illustration 9B.1

The surfaces of constant amplitude shown in Fig. 9B.2 have 
been calculated using the two H1s orbitals

ψ ψ=
π

=
π

− −

a a
1

( ) e 1
( ) er a r a

A
0
3 1/2

/
B

0
3 1/2

/A1 0 B1 0

and noting that rA1 and rB1 are not independent (1). When 
expressed in Cartesian coordinates based on atom A (2), 
these radii are given by rA1 = {x2 + y2 + z2}1/2 and rB1 = {x2 + y2 + 
(z − R)2}1/2, where R is the bond length. A repeat of the analysis 
for ψ− gives the results shown in Fig. 9B.3.

R

rA1 rB1

e

2

x

y

z

z – R

A

B

0

+
–

Figure 9B.3 Surfaces of constant amplitude of the wavefunction 
ψ− of the hydrogen molecule-ion.

Figure 9B.2 Surfaces of constant amplitude of the wavefunction 
ψ+ of the hydrogen molecule-ion.

contour surfaces

amplitude ( )ψ electron denisity ( )|ψ |2 contour surfaces

• an+bonding orbitals



see reader “ Molecular Orbital Theory DescripOon of H2+” for details 

Descrip9on of MO Using the LCAO Approxima9on

67

• energy spliyng between bonding σ MO and an9-bonding σ* MO 

• electron density and hence sum of orbital energies increase 

• schema+c MO energy diagram from LCAO for a symmetric diatomic molecule, such as H2 

E

H HH H

H H

H H

H HH H

1s 1s

σ (bonding)

1 H t 1 H t

σ* (antibonding)

real shape LCAO simplified

real shape LCAO simplified

1s(H) + 1s(H)

1s(H) – 1s(H)

½ΔEσ

σ*

σ

EH

EH + VNN + J − K
1 − S

EH + VNN + J + K
1 + S



see reader “ Molecular Orbital Theory DescripOon of H2+” for details 

Using the LCAO Approxima9on

68

• energy spliyng between σ and σ* MO is not symmetric rela9ve to  due to (small) increase in 
internuclear repulsion  but in par9cular overlap integral S (inrease in electron density)

EH
VNN

• hydrogen atom energy  serves as a reference point 

• internuclear repulsion  is always posi+ve (but not large at bonding distance)

𝐸𝐻

𝑉𝑁𝑁 
E

H HH H

H H

H H

H HH H

1s 1s

σ (bonding)

1 H t 1 H t

σ* (antibonding)

real shape LCAO simplified

real shape LCAO simplified

1s(H) + 1s(H)

1s(H) – 1s(H)

½ΔEσ

σ*

σ

EH

EH + VNN + J − K
1 − S

EH + VNN + J + K
1 + S

• Coulomb integral interaction of the 
electron in AO with nucleus  

• resonance integral for exchange of 
electron from AO  to AO  

• overlap integral  

  

𝑖  𝑗

𝐽 = − ⟨𝜓1𝑠𝑖

𝑒2

4𝜋𝜀0𝑟𝑗
𝜓1𝑠𝑖⟩

𝑖 𝑗

𝐾 = − ⟨𝜓1𝑠𝑖

𝑒2

4𝜋𝜀0𝑟𝑖
𝜓1𝑠𝑗⟩

𝑆 = ⟨𝜓1𝑠𝑖
𝜓1𝑠𝑗⟩



Molecular Orbital View of the Covalent Bond in Mul9atom Molecules

69

• a more correct approach would start from atomic orbitals instead of hybrid orbitals 
• result will be (almost) the same due to “mixing” of orbitals 
• VSEPR model and hybridiza9on are useful and valid simplifica9ons

• simplified and schema+c molecular orbital energy diagram of the methane molecule

1s

2p

σ (bonding)

2s

E

σ* (antibonding)

HCC

HCC

¼ 2s(C) + ¾ 2p(C) + 1s(H)

¼ 2s(C) + ¾ 2p(C) – 1s(H)

4 H t 1 t�C t
simplified LCAO

simplified LCAO

σ*

σ

H
C

H H
H



Complementarity of VB and MO theories

70

• molecular orbital can be constructed from LCAO of hybrid orbitals 

• interac9ons between orbitals of matching symmetry, i. e., not orthogonal  ⟨Ψ1 |Ψ2⟩ ≠ 0

H
C

H H
H

simplified LCAO

simplified LCAO

σ (bonding)

σ* (antibonding)

HCC

HCC

2sp3 + 1s(H)

2sp3 – 1s(H)σ*

σ

2p

2s
1s

E 4 H t

2sp3

1 t�C t



Molecular Orbital Energy Diagrams of Polarized Bond
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• atomic orbitals of more electronega9ve atoms lower in energy (higher electron affinity) 
• increasing energy difference between bonding partners implies less resonance interac9on K

unpolarized covalent σ-bond polarized covalent σ-bond ionic bond

increasing electronega+vity difference (of X and A)

A XA X
δ+ δ–

A A

σ*

2sp3 2sp3

E H3C t t CH3

σ

½ΔEσ

CC CC

CC CC E
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C C
H

H
H H

H
H

C F
H

H
H



Molecular Orbital View of the Carbon-Carbon Double Bond

72

• σ-π separability: only non-orthogonal orbitals (matching symmetry & orienta9on) interact  
• σ-bond (from two sp2) and π-bond (from two pz) with different bond energies, symmetries 
• chemistry defined by highest occupied MO (HOMO) and lowest unoccupied MO (LUMO) 

• simplified and schema+c molecular orbital energy diagram of the ethene molecule
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Rota9on Around a Double Bond

73

• rota9ng p orbitals by 90° breaks the π bond (≈260 kJ/mol), energe9cally unfavorable

• σ bond has rota+onal symmetry with respect to carbon-carbon bond axis 
• π bond has lateral symmetry with respect to carbon-carbon bond axis
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Molecular Orbital View of the Carbon-Carbon Triple Bond
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• σ-π separability: only non-orthogonal orbitals (matching symmetry & orienta9on) interact  
• σ-bond (from two sp2) and two independent π-bonds (from the two pz and py, respec9vely)  
• the two π-bonds are iden9cal in energy, symmetry, just different in orienta9on 
• chemistry defined by π HOMO and π* LUMO, hence reac9vity of ethyne similar to ethene

• simplified and schema+c molecular orbital energy diagram of the ethyne molecule
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P. W. Atkins, Physical Chemistry, Chaptes 7–9, 11th edi+on, Oxford University Press, 2017.
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Valence Bond Theory and Hybridization

Samuel Van Gele

January 2021

1 Introduction

Solving the Schrödinger equation gives rise to the atomic or molecular wavefunctions which
describe the allowed states of electrons in the field of an atomic nucleus and their energies.
These di↵erent wavefunctions or states take the form of complex mathematical functions
(which can be separated into radial and angular wavefunctions) and are described each by a
unique combination of four quantum numbers

• Main quantum number n (n = 1, 2, 3, ...)

• Azimutal quantum number l (l = 0, 1, 2, ...)

• Magnetic quantum number m (m = -l, -l+1, ..., l-1, l)

• Spin quantum number s (s = ± 1/2)

The commonly depicted atomic orbitals are pictorial representations of the probability
density of the wave function  2, i.e. the space where there is a non-zero probability of finding
the electron.

2 The Lewis model and VSEPR

The Lewis model describes a covalent bond as formed from the pairing of two single electrons
from two atoms, while electron lone pairs remain on atoms and not participate in bonding
[2]. Building on this concept, the Valence Shell Electron Pair Repulsion (VSEPR) model
was developed with a set of rules to allow the rational description of molecular geometries.
Indeed, atoms in real molecules can have di↵erent coordination geometries depending on
the number of their binding partners, such as linear, trigonal-planar, tetrahedral, trigonal
bipyramidal, or octahedral. The VSEPR model builds on the simple idea that electron pairs
around a central atom repel each other as much as possible. This includes both electron
pairs involved in covalent bonds and electron lone pairs.

3 Valence Bond Theory and Hybridization

The VSEPR model provides a good rationale with regards to coordination geometry of atoms
but fails to build on an orbital reasoning.

The Valence Bond Theory [1], developed in the 1920s by W. Heitler, F. London and
further elaborated by J. Slater and L. Pauling, provided a quantum-mechanical basis to
the Lewis model, stating that a covalent bond formed from the overlap of atomic orbitals

1

Molecular Orbital Theory Description of H2
+

Lucile Chassat - Samuel Van Gele

January 2021

1 An Approach to the Exact Solution

Solving the problem of the monoelectronic H
+
2 molecule is equivalent to solving the mo-

noelectronic part of the problem of the H2 molecule with its two electrons based on the
independent electrons approximation.

Figure 1: Schematic representation of the H
+
2 ion problem

The Born-Oppenheimer approximation states that one can decouple nuclear motion from
electronic motion due to the large mass di↵erence between the nuclei and electrons. Under
this approximation, one can write the time-independent Schrödinger equation as follows:

(Ĥel + V̂NN) = E (1)

with

Ĥel = � ~2
2me

r2 � e
2

4⇡✏0
(
1

rA
+

1

rB
)

and

V̂NN =
e
2

4⇡✏0a0

Here, V̂NN is a constant relative to the electron position.

(1) , Ĥel = Eel (2)

with Eel = E � VNN which is a purely electronic energy.

One can solve the monoelectronic Schrödinger equation and then add the internuclear repul-
sion energy to determine to total energy of the system E, by utilizing an elliptical coordinate

1
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effect: "We have decided that we might as well go 
along with the Senate and agree to your appointment as 
Rector, provided your will agree to the 17 points listed 
on this document." Hund said he would think it over 
and went to talk with a friend who was a lawyer. The 
friend said that he might as well agree to the 17 articles, 
that they were just formalities, so Hund agreed. But 
some time later he apparently did not do what was 
expected for a visiting Russian dignitary, and it was 
this which led to his retirement as Rector, though he 
remained as professor. 

However, some time later, he had an offer of an 
appointment at Frankfort. At that time lecture visits 
of university people back and forth between East and 
West Germany, but not permanent transfers, were 
rather freely permitted. Mter some hesitation, Hund 
decided to accept the offer. He and each member of his 

family packed a suitcase. They all reached West 
Berlin, and went from there to Frankfort. But of course 
all their furniture was left behind. Nevertheless, quite 
astonishingly, the authorities, who apparently always 
felt Hund to be not a bad fellow, six months later sent 
everything after him to Frankfort. This was a sort of 
thing that did not normally happen to people who left 
East Germany in such an informal manner. 

[Note added in proof: My wife and I and our younger 
daughter had a pleasant visit with Hund and his family 
in Gottingen in July 1965.J 

I will conclude by wishing everyone a happy con-
ference and good shelling on the beach. And I sin-
cerely hope that during and after the conference all who 
are friends now will remain good friends, and that dur-
ing the conference everyone will make many new 
friends. 
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Molecular Orbital and Reitler-London Methods* 
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The historical connection between the molecular orbital and Heitler-London treatments is traced, with 
particular attention to the contributions of Mulliken. Early discussions of the self-consistent-field problem, 
the relations of Heisenberg's work to the antisymmetry of the wavefunction, and configuration interactions 
in the two-electron problem, are reviewed, with references to the heteropolar as well as the homopolar 
cases. Early discussions of directed valence are mentioned. The Coulson-Fischer, Hurley-Lennard-Jones-
Pople, and altemant molecular orbital approaches to bonding are discussed, with mention of recent work 
on correlation energy. 

INTRODUCTION 

I N a symposium honoring Robert S. Mulliken, one 
can hardly do otherwise than trace the importance 

of the molecular orbital method of handling molecular 
structure, with which his name, together with that of 
Hund, is so closely associated. But at the same time 
one cannot avoid the other complementary method, 
originated by Heitler and London, considered in its 
earlier days to be a rival rather than an addition to the 
molecular orbital procedure. The older history of the 
relation of these two methods is well known. It is 
interesting, however, to trace the way in which the two 

* This work was assisted by grants from the National Science 
Foundation. 

approaches have had their effect on the present develop-
ment of molecular theory. Some of these more recent 
advances may not be familiar to all the workers in 
chemical physics, many of whom may not have followed 
the current lines of development of the theory of the 
chemical bond.1 

PREWAR PERIOD 

The two methods under consideration had their 
start almost simultaneously, within a couple of years 

1 The general point of view presented here is elaborated in the 
text by the present author, Quantum Theory of Molecules and 
Solids. Electronic Structure of Molecules (McGraw-Hill Book 
Company, Inc., New York, 1963), Vol. 1, to which frequent 
reference is made in this paper. 



Learning Outcome
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• covalent bond described by molecular orbitals, delocalized over two atoms 

• molecular orbitals by linear combina9on of atomic or hybrid orbitals 

• interac9ons only between non-orthogonal orbitals 

• number of orbitals preserved but sum of all orbital energies increases  

• mul9ple bonds can be described as dis9nct σ bond plus one or two π bonds 

• σ bond has rota+onal symmetry with respect to carbon-carbon bond axis  

• π bond has lateral symmetry; rota+on requires breaking it 

• chemistry & physics dominated by fron9er orbitals: π HOMO and π* LUMO


